
CounterSnipe – Writing your own rules with Version 8.x.x

CounterSnipe provides vulnerability attack protection by keeping your systems automatically 
updated. Every hour the countersnipe IPS systems poll countersnipe risk servers to determine if 
there are new updates to the riskdata. Any new riskdata files are downloaded and ‘loaded’ into the 
local countersnipe database. This mechanism ensures that your systems are always protected from
any attacks looking to exploit vulnerabilities within your network.

Countersnipe also provides policy signatures. But, in most cases you would wish to write your own 
policies that are specific to your organization. These could simply be who has what access to what 
systems or more detailed whereby you might want to monitor, log and protect against any 
unauthorized activities or unauthorized access to internal resources.

This document should provide you the background information and understanding about the risk 
data rule set used in countersnipe. 

Here are some key points to note:

 It is not possible for you to manually edit any countersnipe rules that are uploaded from our servers. But it 
is possible for you to copy them into local group and then change them by selecting 'edit'.  

 All access to countersnipe rules is via the Management Console. 

 Please use the interface provide, by clicking on ‘policies’ and ‘new’ to compose your company specific 
rules.

 The rules language and options are Snort compatible and Suricata compatible. Suricata options are not 
necessarily compatible with snort IDS engine. CounterSnipe version 7.0.0 upwards uses Suricata  and as 
such any suricata documentation as widely available will be equally useful in wiriting the rules.

 The standard order of rules is

◦ Pass

◦ drop

◦ reject

◦ alert

Let us start with an example of a rule;

ACTION tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"MALWARE Traffic Syndicate 
Add/Remove"; sid:7000009; rev:1; classtype:policy-violation; flow: to_server,established; 
uricontent:"/Support/AddRemove.aspx?id="; nocase;) 

In the rule above all of the options not in yellow are chosen from selection menus. Most of the drop down options 
are self explanatory and documented in the main admin guide. The purpose of this document is primarily to cover 
the key options that you will require to complete depending upon what you are trying to achieve.

The following screen shot allows you to edit the rule. There are various selections that can be made;



Name: When an event occurs, it will be logged under this name. Therefore a carefully chosen and detailed name 
will help you easily identify what happened.

SID: Please do not change. This is system allocated.

Revision: If you have two versions of the same signature, specify the version number.

Classification: Choose a classification level for your signature. If you want to be alerted on it, then you may want 
to choose 'High' if Alert Handling is configured for alerting on 'High' If you just want to log the events, then you will 
need to choose a classification that is not configured to send out alerts.

Protocol: Please choose the appropriate protocol.

Source/Destination: You can specify a pre defined Variable, a Range, a single IP or a all of those with a !(not) sign
preceeding them. For example !192.168.0.24 will function for everything but 192.168.0.24.

Port: Specify a Variable, a single port or a range of ports. To specify a range, 1:444 all ports including the two 
values, 443: means all ports starting 443 and :443 means all ports upto 443. You can use ! For negating the same
way as for Source/Dest.

Direction: The direction field is used to tell Suricata which IP address and port is the source and 
which pair is the destination.  Specifying <> as the direction tells Suricata that you want the rule to 
apply bidirectionally. This is especially useful when using log rules, since you can log both sides of 
the TCP stream rather than just one direction.

Options: There are wide range of options available. We will cover the most common ones in this document. I 
training course is recommended for complete a-z of options.



Looking at our rule above, flow: to_server,established; uricontent:"/Support/AddRemove.aspx?id="; 
nocase; then remains our options part. 

When a packet comes in, its source and destination IP addresses and ports are then compared to 
the rules in the ruleset. If any of them are applicable to the packet, then the options are compared 
to the packet. If all of these comparisons return a match, then the specified action is taken. The 
action can be individually set for each rule by selecting 'Action' from the menu and changing the 
action either globally or for an individual sensor.

Back to our rule then. This rule monitors for all network traffic originationg from within the 
Home_Net and going to External_Net, over tcp protocol and Http ports if that traffic is flowing to the 
server and the flow is established it will look in the URI field and look for the Add/Remove options. If
it gets a match it will take an action in line with the Action setting.

Now that you know all of the fields, you will be able to write your own rules. At least some simple 
rules to perform regular tasks.  All you will have to do is create new policy, then click to access it, 
click edit and select appropriate fields. Once selected use the keywords and  values to fine tune the
rule. 

Here are some of the more useful keywords and their possible values;

content: allows you to search a packet for a sequence of characters or hexadecimal values. If you 
are searching for a string, you can just put it in quotes. In addition, if you want it to do a case-
insensitive search, you can add nocase; to the end of all your options. However, if you are looking 
for a sequence of hexadecimal digits, you must enclose them in | characters.

Remeber you only add the options as all else is taken care of in the menu drop downs.

Example1: content: “Youtube”; nocase;

Example2: content:”|90|”;

This rule will trigger when it sees the digit 0x90. This digit is the hexadecimal equivalent of the NOP 
instruction on the x86 architecture and is often seen in exploit code since it can be used to make 
buffer overflow exploits easier to write.

The offset and depth options can be used in conjunction with the content option to limit the 
searched portion of the data payload to a specific range of bytes.

If you wanted to limit content matches for NOP instructions to between bytes 40 and 75 of the data 
portion of a packet, you could modify the previously shown rule to look like this:

Example:  content:"|90|"; offset:40; depth:75;

You can also match against packets that do not contain the specified sequence by prefixing it with a
!. In addition, many shell code payloads can be very large compared to the normal amount of data 
carried in a packet sent to a particular service. You can check the size of a packet's data payload by
using the dsize option. This option takes a number as an argument. In addition, you can specify an 
upper bound by using the < operator, or you can choose a lower bound by using the > operator. 
Upper and lower bounds can be expressed with <>.

Example:  content:"|90|"; offset:40; depth:75; dsize: >6000;



This modifies the previous rule to match only if the data payload's size is greater than 6000 bytes, 
in addition to the other options criteria.

flow: 

The flow rule option is used in conjunction with TCP stream reassembly. It allows rules to only apply
to certain directions of the traffic flow. 

This allows rules to only apply to clients or servers. This allows packets related to $HOME_NET 
clients viewing web pages to be distinguished from servers running the $HOME_NET. 

The established keyword will replace the flags: A+ used in many places to show established TCP 
connections. 

Options

to_client 

trigger on server responses from A to B 

to_server 

trigger on client requests from A to B 

from_client 

trigger on client requests from A to B 

from_server 

trigger on server responses from A to B 

established 

trigger only on established TCP connections 

stateless 

trigger regardless of the state of the stream processor ( useful for packets that are designed to 
cause machines to crash ) 

no_stream 

do not trigger on rebuilt stream packets ( useful for dsize and stream4 ) 

only_stream 

only trigger on rebuilt stream packets 

Format

flow:[to_client|to_server|from_client| \

  from_server|established|stateless|no_stream|only_stream]}

Examples:

alert tcp !$HOME_NET any -> $HOME_NET 21 (flow: from_client; \

       content: "CWD incoming"; nocase; \

       msg: "cd incoming detected"; )



alert tcp !$HOME_NET 0 -> $HOME_NET 0 \

      (msg: "Port 0 TCP traffic"; flow: stateless;)

flags: To check the TCP flags of a packet, Suricata provides the flags option. This option is 
especially useful for detecting port scans that employ various invalid flag combinations.

For example, this rule will detect when the SYN and FIN flags are set at the same time:

flags: SF,12; 

Valid flags are S for SYN, F for FIN, R for RST, P for PSH, A for ACK, and U for URG. In addition, 
Snort lets you check the values of the two reserved flag bits. You can specify these by using either 
1 or 2. You can also match packets that have no flags set by using 0. There are also several 
operators that the flags option will accept. You can prepend either a + , *, or ! to the flags, to match 
on all the flags plus any others, any of the flags, or only if none of the flags are set, respectively.

Tag: 

The tag keyword allow rules to log more than just the single packet that triggered the rule. Once a 
rule is triggered, additional traffic involving the source host is ``tagged''. Tagged traffic is logged to 
allow analysis of response codes and post-attack traffic. See Figure 2.26 for usage examples. 

Format

tag: <type>, <count>, <metric>, [direction]

type 

session 

log packets in the session that set off the rule 

host 

log packets from the host that caused the tag to activate (uses [direction] modifier) 

count 

Count is specified as a number of units. Units are specified in the <metric> field. 

metric 

packets 

tag the host/session for <count> packets 

seconds 

tag the host/session for <count> seconds 

alert tcp !$HOME_NET any -> $HOME_NET 143 (flags: A+; \

      content: "|e8 c0ff ffff|/bin/sh";  tag: host, 300, packets, src; \

      msg: "IMAP Buffer overflow, tagging!";)



alert tcp !$HOME_NET any -> $HOME_NET 23 (flags: S; \

     tag: session, 10, seconds; msg: "incoming telnet session";

File Detection Related Keywords:

The filestore comes enabled as default. However no files will be logged and stored unless a rule is 
written and deployed to do so.

The simplest and very throughput expensive rules will be as below ( only showing the options part)

flow:established,to_client;filestore;

or 

filestore;

for file recording in any direction.

These rules will store all files transferred via http in a directory called filestore on the Countersnipe 
system. The directory can be compressed and backed up frequently by using the included script 
called backup-filestore. The task can also be automated for regular backups. CounterSnipe 
support@countersnipe.com will be able to help in the automation process.

Other file related words for narrowing the search and store;

filename:<string>;

Example:

filename:"secret";

fileext:<string>;

Example:

fileext:"jpg";

filemagic:<string>;

Example:

filemagic:"executable for MS Windows";

filestore:<direction>,<scope>;

direction can be:

    request/to_server: store a file in the request / to_server direction

    response/to_client: store a file in the response / to_client direction

    both: store both directions



scope can be:

    file: only store the matching file (for filename,fileext,filemagic matches)

    tx: store all files from the matching HTTP transaction

    ssn/flow: store all files from the TCP session/flow.

If direction and scope are omitted, the direction will be the same as the rule and the scope will be 
per file.

filemd5:[!]filename;

The filename is expanded to include the rule dir. In the default case it will become 
/etc/suricata/rules/filename. Use the exclamation mark to get a negated match. This allows for white
listing.

Examples:

filemd5:md5-blacklist;

filemd5:!md5-whitelist;

File format

The file format is simple. It's a text file with a single md5 per line, at the start of the line, in hex 
notation. If there is extra info on the line it is ignored.

Output from md5sum is fine:

2f8d0355f0032c3e6311c6408d7c2dc2  util-path.c

b9cf5cf347a70e02fde975fc4e117760  util-pidfile.c

02aaa6c3f4dbae65f5889eeb8f2bbb8d  util-pool.c

dd5fc1ee7f2f96b5f12d1a854007a818  util-print.c

Just MD5's are good as well:

2f8d0355f0032c3e6311c6408d7c2dc2

b9cf5cf347a70e02fde975fc4e117760

02aaa6c3f4dbae65f5889eeb8f2bbb8d

dd5fc1ee7f2f96b5f12d1a854007a818

Memory requirements

Each MD5 uses 16 bytes of memory. 20 Million MD5's use about 310 MiB of memory.

filesize:<value>;

Examples:

filesize:100; # exactly 100 bytes

filesize:100<>200; # greater than 100 and smaller than 200



filesize:>100; # greater than 100

filesize:<100; # smaller than 100

Additionally here is a list of other Keywords and their description. These are less commonly used in 
bespoke situations.

ttl 

test the IP header's TTL field value 

tos 

test the IP header's TOS field value 

id 

test the IP header's fragment ID field for a specific value 

ipoption 

watch the IP option fields for specific codes 

fragbits 

test the fragmentation bits of the IP header 

seq 

test the TCP sequence number field for a specific value 

ack 

test the TCP acknowledgement field for a specific value 

itype 

test the ICMP type field against a specific value 

icode 

test the ICMP code field against a specific value 

icmp_id 

test the ICMP ECHO ID field against a specific value 

icmp_seq 

test the ICMP ECHO sequence number against a specific value 

content-list 

search for a set of patterns in the packet's payload 

session 

dumps the application layer information for a given session 

rpc 



watch RPC services for specific application/procedure calls 

resp 

active response (knock down connections, etc) 

react 

active response (block web sites) 

tag 

advanced logging actions for rules 

ip_proto 

IP header's protocol value 

sameip 

determines if source ip equals the destination ip 

stateless 

valid regardless of stream state 

regex 

wildcard pattern matching 

byte_test 

numerical evaluation 

within 

forcing relative pattern matching to be within a count 

byte_test 

numerical pattern testing 

byte_jump 

numerical pattern testing and offset adjustment 

We hope that the information above will enable you to write some quick rules for daily tasks. Please
contact support@countersnipe.com if you need help with any specific rules. We also recommend 
the comprehensive training course that we offer where you will be able to learn in details all of the 
options and practice your rule writing skills in the supervision of our instructors.

(c) CounterSnipe Systems LLC. March 2015.

mailto:support@countersnipe.com

